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Abstract: Each year, many African countries experience natural hazards such as floods and, because of
their low adaptative capabilities, they hardly have the means to face the consequences, and therefore
suffer huge economic losses. Extreme rainfall plays a key role in the occurrence of these hazards.
Therefore, climate projection studies should focus more on extremes in order to provide a wider
range of future scenarios of extremes which can aid policy decision making in African societies. Some
researchers have attempted to analyze climate extremes through indices reflecting extremes in climate
variables such as rainfall. However, it is difficult to assess impacts on streamflow based on these
indices alone, as most hydrological models require daily data as inputs. Others have analyzed climate
projections through general circulation models (GCMs) but have found their resolution too coarse for
regional studies. Dynamic downscaling using regional climate models (RCMs) seem to address the
limitation of GCMs, although RCMs might still lack accuracy due to the fact that they also contain
biases that need to be eliminated. Given these limitations, the current study combined both dynamic
and statistical downscaling methods to correct biases and improve the reproduction of high extremes
by the models. This study’s aim was to analyze extreme high flows under the projection of extreme wet
rainfall for the horizon of 2041 of a Kenyan South Coast catchment. The advanced delta change (ADC)
method was applied on observed data (1982–2005), control (1982–2005) and near future (2018–2041)
from an ensemble mean of multiple regional climate models (RCMs). The created future daily rainfall
time series was introduced in the HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling
System) hydrological model and the generated future flow were compared to the baseline flow at
the gaging station 3KD06, where the observed flow was available. The findings suggested that in
the study area, the RCMs, bias corrected by the ADC method, projected an increase in rainfall wet
extremes in the first rainy season of the year MAMJ (March–April–May–June) and a decrease in
the second rainy season OND (October–November–December). The changes in rainfall extremes,
induced a similar change pattern in streamflow extremes at the gaging station 3KD06, meaning that
an increase/decrease in rainfall extremes generated an increase/decrease in the streamflow extremes.
Due to lack of long-term good quality data, the researchers decided to perform a frequency analysis
for up to a 50 year return period in order to assess the changes induced by the ADC method. After
getting a longer data series, further analysis could be done to forecast the maximum flow to up to
1000 years, which could serve as design flow for different infrastructure.
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1. Introduction

The world is experiencing the effects of climate change, with extreme climate events increasing
with time, making the situation grow from bad to worse. Developing countries such as those in Africa
are more vulnerable due to poverty and low adaptive capacity [1]. Some studies have attempted to
investigate rainfall extremes’ variability in recent decades and the future in Africa. Mason et al. [2]
investigated changes in extreme rainfall events in South Africa in the 20th century. The authors
reported that the intensity of extreme rainfall events has significantly increased in more than half of the
country. Fotso-nguermo et al. [3] studied projected rainfall extremes over Central Africa (CA) based on
outputs from twenty global climate models (GCMs) of the Coupled Model Intercomparison Project
Phase 5 (CMIP5) produced under the RCP8.5 scenario. The authors concluded that extreme rainfall
events might become more frequent, thereby worsening flood conditions in CA countries. Ongoma
et al. [4] studied the variability of extreme rainfall events over East Africa (EA), using indices from the
World Meteorological Organization (WMO) Expert Team on Climate Change Detection and Indices
(ETCCDI). Their results showed that the standardized rainfall anomaly increased, especially above
normal, which may imply an increase in extreme rainfall events. The annual total precipitation in
wet days (PRCPTOT), showed a decrease until the 2000s followed by an increase in the next decade.
Gebrechorkos et al. [5] tested the variability of precipitation extremes in the Eastern Africa (Ethiopia,
Kenya, and Tanzania) region during 1981–2016. They found significant increasing trends in Kenya for
the simple daily intensity index (SDII), the very wet days’ precipitation (R95P), and the extremely wet
days’ precipitation (R99P). According to the fifth Intergovernmental Panel on Climate Change (IPCC)
report [6], “droughts and storms have been more frequent in Eastern Africa in the last 30–60 years”
and IPCC projections expect such events to be more frequent and intense in the near future.

Therefore, there is an urgent need for African countries to anticipate the impacts of extreme events
through projection scenarios. Projections have been made using GCMs which were found to have
coarse resolution and give only fairly accurate results [7]. Moreover, the GCMs’ outputs involve some
biases which can lead to significant errors in impacts studies. One way to improve the accuracy of
GCMs is through dynamical downscaling using regional climate models (RCMs). High resolution
regional climate models give a better local capturing of important details like mountains, coasts, lakes
and vegetation [8–10]. They might still lack accuracy when the resolution is not high enough to allow
for impacts assessments at a point scale. In addition, outputs from RCMs also contain biases inherited
from driving GCMs which need to be eliminated [11]. It was found that a combination of dynamical
and statistical downscaling could address the non-accurate projections of the models [12–15].

Several statistical downscaling methods (also called bias correction methods) have been tested in
the past decades [10–12], such as the delta change method [16], the multiplicative correction [17], the
monthly non-linear correction [18] and the power transformation [19]. Some of the methods consist
of correcting the mean error, while others focus on both average and variance or on the correction of
mean and standard deviation [20]. A focus on extremes is needed for extreme events analysis. In this
study, a more advanced delta method was applied; this approach has the advantage of taking into
account both changes in the mean and in the extremes. In addition, a non-linear transformation was
applied, rather than a proportional adjustment of observed precipitation.

In recent years, the assessment of hydrological impacts of climate change has been of great interest.
The physically-based HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System)
model [21] has been used in different parts of the world and was pointed out as an highly adaptable
model that includes a variety of model choices for each part of the hydrologic cycle. Rehana et al. [22]
used the HEC-HMS model to evaluate the impacts of possible future climate change scenarios on
the hydrology of the Tunga–Bhadra River basin in India. They provided, as input, some large-scale
climate variables for the A2 and B2 emission scenarios obtained from the Hadley Centre Coupled
Model version 3. Tefera [23] assessed the availability of surface water resources in the Beles River
basin (Ethiopia), using a surface water balance model simulation by HEC-HMS. Muli N. [24] used
the HEC-HMS model to study flood in a Nairobi watershed based on a rainfall-runoff process while
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considering urban development and its effects on the watershed. Bitew et al. [25] also used the
HEC-HMS model to simulate the surface runoff for the Gilgel Abay catchment in Ethiopia. The Soil
Conservation Service curve number (SCS-CN), the Soil Conservation Service unit hydrograph (SCS-UH)
and the Muskingum methods were applied for loss, runoff estimation, and flow routing, respectively.
Ouédraogo et al. [26], the authors of the current study, performed a calibration, validation, performance
evaluation and sensitivity analysis for the HEC-HMS model in the Mkurumudzi catchment. The
Soil Moisture Accounting (SMA) loss method, combined with the canopy and surface methods, was
applied to model the infiltration losses. The Soil Conservation Service unit hydrograph (SCS-UH) and
the Lag methods were applied for the runoff estimation and flow routing, respectively. Based on the
performance results, the model was found suitable to model streamflow in the Mkurumudzi catchment.

The objective of the current study was to analyze extreme high flows under the projection of the
extreme rainfall for horizon 2041. This objective was met through: (1) The assessment of the accuracy
of the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data in comparison with
ground-station data, (2) the projection of future rainfall extremes using a combination of dynamic and
statistical downscaling method after a performance evaluation and selection of climate models, and
(3) a streamflow simulation and frequency analysis under the created projections.

2. Materials and Methods

2.1. Study Area

Kenya is a country in East Africa with a coastline on the Indian Ocean (Figure 1) which has
47 smaller administrative units commonly referred to as counties. One such County is Kwale, located
in the coast region of Kenya and which covers an approximate area of 8332.2 km2, with an area of
62 km2 uninhabited because it is under water. The county lies between latitude 3◦3′ and 4◦45′ South
and longitude 38◦31′ and 39◦31′ East, as presented in Figure 1.
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Figure 1. Location Map of Mkurumudzi catchment within Kwale County in Kenya.

Kwale County experiences a monsoon climate with a bimodal rainfall pattern. The long rains fall
between March and June (MAMJ), and the short rains fall between October and December (OND).
The county receives rainfall in the ranges between 800 and 1600 mm along the coast and 400–600 mm
in the hinterland. The temperature ranges from 26.3 to 26.6◦C in the coastal lowlands, 25–26.6 ◦C in the
coastal ranges, and 24.6–27.5◦C in the hinterlands [27]. The highest mean temperatures are experienced
in the months of April and November, while the coolest period is between June and August. The
vegetation of the area consists of natural grassland, forested land and typical coastal vegetation palm
trees, mango trees, etc., while other areas are cleared and covered with sugarcane plantations. This
study focused on the Mkurumudzi catchment, covering an area of 186 km2 (Figure 1).
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2.2. Flowchart of the Study

The steps taken in this study are highlighted in Figure 2. The methodology consisted of projecting
future rainfall extremes and evaluating the hydrological response of the studied catchment to these
projections. The advanced delta change (ADC) method was used for the projection and required
historical and RCMs’ rainfall data. To address the non-accuracy of the observed ground stations
data (due to the presence of gaps), CHIRPS data were evaluated and used instead. A performance
evaluation of the RCMs was also conducted to choose the candidate models for the application of the
ADC method. The ADC model was validated, and the best performing RCMs were selected and used
for further analysis. After the application of the ADC method, the created rainfall time series were put
into the HEC-HMS model for the hydrological modeling of the catchment.
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2.3. Available Rainfall Datasets

The current study on extreme rainfall, as is the case with all climate-related studies, required
good quality daily observed data [28]. The observed data measured from the ground stations were
the best options but, in most cases, especially in Africa, such data sets are difficult to obtain. This
is because it is difficult to install and maintain a network of rainfall stations with the capability of
providing rainfall data in real time. Even if the data are available, they have some gaps. For instance,
Figure 3 shows the rainfall data availability graph from stations in the study area. The data used to
create the graphs are from a network of ten ground stations within the study area for a 47-year period
(1959–2016). The full horizontal lines represent the available data, while the breaks represent the
periods with missing data. The data were obtained from the Kenya Meteorological Department (KMD),
the government agency entrusted with the collection and storage of meteorological data. Therefore,
satellite precipitation estimates are a very attractive option, because they provide continuous spatial
estimates of precipitation.

The Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) is a 30+ year
quasi-global rainfall dataset, spanning from 50 ◦S to 50 ◦N (and all longitudes), starting in 1981 to
near-present. The CHIRPS incorporates a 0.05◦ resolution satellite imagery with in-situ station data
to create gridded rainfall time series for trend analysis and seasonal drought monitoring [28]. Data
can be extracted for points using geographic coordinates. Some efforts have gone into evaluating the
accuracy of the Climate Hazards Group products [29]. The authors found CHIRPS rainfall product
suitable as an alternative source of rainfall information for their study areas. This study used the same
principle to evaluate the accuracy of CHIRPS data within the Mkurumudzi catchment.
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2.4. Evaluation Metrics

For the purpose of performance evaluation, both KMD and CHIRPS rainfall data were compared
to assess their goodness-of-fit on a monthly and an annual time step, respectively. The comparison
was done for the period 1981–2016, as CHIRPS data start from 1981 and observed data stop at 2016.
Legates and Mccabe [30] and Moriasi et al. [31] recommended that a good model efficiency evaluation
criterion should have at least three important components: One dimensionless statistic, one absolute
error index statistic and one graphical technique. This means that none of the statistics are used alone,
but when applied together, they form a set of model performance evaluation criteria which offsets the
limitation of each other. Therefore, in this study, the following statistics in addition to the coefficient
of correlation which is limited by its oversensitivity to outliers and its insensitivity to additive and
proportional differences between satellite and observed data [30] were used:
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(a) The coefficient of correlation (R2), which describes the percentage of the variance in observed
data explained by the satellite. R2 ranges from 0 to 1, where values greater than 0.5 are considered
acceptable [32,33].

R2 =


∑n

i=1

(
Oi −O

)
x
(
Si − S

)
√∑n

i=1

(
Oi −O

)2
x
∑n

i=1

(
Si − S

)2


2

(1)

where Oi and Si are the observed and satellite rainfall at time I, respectively, and Ō and S are the
average observed and satellite rainfall during the evaluation period, respectively.

(b) The dimensionless statistic: Index of agreement (d) was used and is given by:

d = 1−

∑n
1=1(Oi − Si)

2∑n
i=1

(∣∣∣Si −O
∣∣∣+ ∣∣∣Oi −O

∣∣∣)2 (2)

The index of agreement complements R2 by its ability to detect the additive and relative variations
in the observed and simulated averages and variances. According to Willmott [32], d varies
between 0 (absolutely no agreement between the observed and the satellite rainfall) and 1
(perfect agreement).

(c) The absolute error index represented by the RSR (RMSE standard deviation ratio) given by:

RSR =

√∑n
i=1(Oi − Si)

2√∑n
i=1

(
Oi − O

)2
(3)

The RSR is recommended over the RMSE because it combines both an absolute error index and
the supplementary information suggested by [30]. The RSR ranges from 0 (optimal value) to a larger
positive value, indicating poor performance. A lower value of RSR indicates a lower root mean
squared error, which indicates the rightness of the satellite [31]. The general performance ratings for
the statistics are presented in Table 1.

Table 1. General performance ratings for recommended statistics [31].

No. Performance Rating R2 d RSR

1 Very Good 0.75 to 1 0.90 to 1 0 to 0.50
2 Good 0.65 to 0.75 0.75 to 0.90 0.50 to 0.60
3 Satisfactory 0.50 to 0.65 0.50 to 0.75 0.60 to 0.70
4 Unsatisfactory <0.50 <0.50 >0.70

2.5. Projection of Future Rainfall Extremes Using the Advanced Delta Change Approach on Regional Climate
Models Output

The classic delta change method [12] describes a linear transformation of mean precipitation
values, which may result in an unrealistic change of the precipitation distribution compared to the
changes that occur in the GCMs. However, detailed insight in the change of the extremes in the
precipitation distribution is valuable for research and modeling, as many environmental processes are
triggered only by extreme low or high precipitation amounts, e.g., flooding, erosion and vegetation
stress. To accommodate this, a revised version of the delta change method was proposed by [34],
who called it the advanced delta change (ADC) method. For the application, the authors used GCMs
from the Coupled Model Intercomparison Project Phase 3 (CMIP3). This study used the regional
climate models (RCMs) outputs, from the Coordinated Regional climate Downscaling Experiment
(CORDEX), driven by GCMs from the Coupled Model Intercomparison Project Phase 5 (CMIP5).
The RCMs outputs were produced under the Representative Concentration Pathway (RCP 8.5). Before
the application of the ADC method, a performance evaluation of the climate models’ outputs was
undertaken in order to use the data that best fits the study area.
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2.5.1. CORDEX Africa Rainfall Data

The CORDEX (Coordinated Regional Climate Downscaling Experiment) program is a framework
that was initiated by the World Climate Research Program (WCRP) to evaluate regional climate model
performance through a set of experiments aimed at producing regional climate projections. Twenty-one
RCMs were evaluated in this study (Table 2). These RCMs were considered for the African domain at a
resolution of 0.44 × 0.44 degrees from the historical experiment. Because CHIRPS and RCMs data were
available for different periods, this study considered only the overlap period between 1981 and 2005
on a monthly time step. The Regional Climate Model Evaluation System (RCMES) is a system that
provides an evaluation tool for RCMs using observations. The RCMES system requires three main
elements to function: An observations database (which in this study was the CHIRPS data), CORDEX
models outputs, and RCMES toolkits. The first step involves loading the observations and models
datasets. Once the datasets are loaded, RCMES spatially subsets the datasets, optionally re-grids
the subset datasets, compares the re-gridded datasets, calculates model performance metrics, and
visualizes/plots the metrics. The processed observational and model datasets are saved in a NetCDF
file. All these model evaluation processes are controlled by the user’s input [35]. Detailed information
about the software installation and tutorials can be found in [36]. The RCMES workflow can be found
in Figure A1 in Appendix B.

Table 2. List of the regional climate models that were evaluated in this study.

RCMs Institute Driving GCMs ID

CLMcom-
CCLM4-8-17

Climate Limited-area Modelling Community
(CLM-Community), Germany

MOHC-HadGEM2-ES A
MPI-M-MPI-ESM-LR B

CNRM-CERFACS-CNRM-CM5 C

UQAM-
CRCM5

Universite du Québec à Montréal, Canada MPI-M-MPI-ESM-LR D
CCCma-CanESM2 E

KNMI-
RACMO22T

Royal Netherlands Meteorological Institute,
De Bilt, The Netherlands

MOHC-HadGEM2-ES F
ICHEC-EC-EARTH G

SMHI-RCA4
Swedish Meteorological and Hydrological

Institute, Rossby Centre

CCCma-CanESM2 H
NOAA-GFDL-GFDL-ESM2M I

NCC-NorESM1-M J
CNRM-CERFACS-CNRM-CM5 K
CSIRO-QCCCE-CSIRO-Mk3-6-0 L

IPSL-IPSL-CM5A-MR M
MIROC-MIROC5 N

MOHC-HadGEM2-ES O
MPI-M-MPI-ESM-LR P

GERICS-
REMO2009

Helmholtz-Zentrum Geesthacht, Climate
Service Center Germany, Alfred Wegener
Institute, Helmholtz Centre for Polar and

Marine Research, Germany

MOHC-HadGEM2-ES Q
MPI-M-MPI-ESM-LR R

NOAA-GFDL-GFDL-ESM2G S
IPSL-IPSL-CM5A-LR T

MIROC-MIROC5 U

The following two criteria defined by [3] were used to select the best models:

- The pattern correlation ≥0.6.
- the standard deviation ratio within the range of 1.00 ± 0.25.

Many factors have to be taken into consideration when projecting climate change. A key
variable is the amount of future greenhouse gas emission. The Intergovernmental Panel on Climate
Change (IPCC) in the fifth assessment report (AR5) [6] created a new set of scenarios to provide
time-dependent projections of atmospheric greenhouse gas (GHG) concentrations. These scenarios,
called Representative Concentration Pathways (RCPs), are characterized by four different types of
radiative forcing: One rising pathway for which the radiative forcing reaches >8.5 Watts/m2 by 2100
and continues to rise for some amount of time, RCP8.5 [37]; two intermediate “stabilization pathways”
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in which the radiative forcing is stabilized at approximately 6 Watts/m2 (RCP6.0) and 4.5 Watts/m2

(RCP4.5) after 2100 [38,39]; and one pathway where radiative forcing peaks at approximately 3 Watts/m2

before 2100 and then declines to 2.6 Watts/m2 by 2100 (RCP2.6) [40]. In this study, the RCP8.5 was
chosen, due to the high GHG concentration level and the fact that the study was on extremes under the
most pessimistic situation. All available RCMs outputs for Africa and under RCP8.5 were evaluated
and are presented in Table 2.

2.5.2. Basin Model Setting-Up in HEC-HMS

For the modeling part, the HEC-HMS [41] was used after calibration, validation and performance
evaluation [26]. HEC-HMS is a modeling system which can provide a representation of different
watersheds. It simulates the rainfall-runoff processes, producing hydrographs that can be used for
further analysis [21].

Before the HEC-HMS project can be run, the following four components are needed: Basin
data component, meteorological data component, input data component and control specification
component. The basin component is created based on a background map containing the delineated
sub-basins derived from the Arc Hydro tool 10.3 from ESRI (Environmental Systems Research Institute).
The meteorological component contains the observed precipitation and discharge data; the control
specification component determines the simulation period and the time step to be used. The rainfall
data (1981–2017) from five rain stations located at the center of each sub-basin and the observed flow
(1988–1995) from the stream gauge station (3KD06) were used for the calibration and validation of
the model. Due to the location of the 3KD06 station where stream flow data are available, only the
two upstream sub-basins—M1 and M2 (Figure 4)—were used. A daily time step was used for the
simulation, given the time interval of the available observed data.

All the model setting details are presented in [26] and the user’s manual [21].

2.5.3. The Advanced Delta Change Approach

The advanced delta change method applied in this study proposed by [34] comprises a non-linear
transformation of daily observed precipitation series by using a climate signal from an RCM. The output
data were used in the hydrological model to generate flows that were then analyzed to find the impact
on flood flow statistics. Rather than a proportional adjustment of observed precipitation, the following
non-linear transformation was applied to the data:

P∗ = aPb (4)

where P and P∗ represent the observed and future precipitation, respectively, and a and b are the
transformation coefficients (a, b > 0).

The coefficients a and b are derived from the 60% quantile (P60) and the 90% quantile (P90)
of the 5-day precipitation sums and the (future) changes therein. Sample quantiles based on the
ordered non-overlapping 5-day precipitation amounts were used as estimates of P60 and P90. The
value P60 was considered because this quantile is closer to the mean than the median value (P50),
owing to the positively skewed probability distribution of the 5-day precipitation amounts. Since the
transformation given by Equation (4) represents a monotonic increase, the quantiles of the transformed
5-day precipitation sums are simply obtained by applying the same transformation to the quantiles of
the observed 5-day precipitation:

P∗60 = a(P60)
b (5)

P∗90 = a(P90)
b (6)

From these two equations, b is solved by eliminating a and is given by:

b =
log(P∗90/P∗60)

log(P90/P60)
(7)
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Once b is determined, a is obtained by substituting b into Equation (5) as:

a = P∗60/(P60)
b (8)

1 
 

 

Figure 4. Mkurumudzi basin model (Source [26]).

If there is no bias in the 60 % quantile PC
60 and the 90 % quantile PC

90 in the RCM control simulation
compared to the observations, the quantiles PC

60 and PC
90 can be substituted for P60 and P90 in Equations

(7) and (8), and the quantiles PF
60 and PF

90 in the future climate for P∗60 and P∗90. The superscripts C and
F refer to the control and future simulations, respectively. However, if P60 and P90 are biased, this
method results in a transformation that does not reproduce the relative changes in these quantiles.
In order to ensure that the relative changes of P60 and P90 in the transformed series correspond to
the relative changes of these quantiles in the RCM simulation, the following bias-correction factors
are introduced:

g1 = PO
60/PC

60 (9)

g2 = PO
90/PC

90 (10)

where the superscript C again refers to the RCM control climate and O refers to the observed (reference)
data. These corrections were applied to PC

60, PC
90, PF

60 and PF
90. The coefficients a and b then become:
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b =
log

{
g2.PF

90/g1.PF
60

}
log

{
g2.PC

90/g1.PC
60

} (11)

a = PF
60/

(
PC

60

)b
.g1−b

1 (12)

Equation (4) can be applied to the observed values for which P ≤ PO
90. For larger P values, this

equation is not flexible enough to adequately reproduce the changes in the extremes. This could be
improved by separately addressing the change in the excesses, E = P − P90, i.e., the events exceeding
P90. The mean excesses for the control and future period are defined as:

EC =

∑
EC

nC and EF =

∑
EF

nF (13)

where nC and nF are the numbers of 5-day periods in which the 90% quantile is exceeded in the
control and future run, respectively. The size of the mean excess is closely related to the slope of
an extreme-value plot of the seasonal maximum 5-day precipitation amounts. To ensure that the
transformation reproduces the change in the mean excess, Equation (4) becomes [34]:

P∗ = EF/EC.
(
P− PO

90

)
+ a

(
PO

90

)b
f or P > PO

90 (14)

Effectively, the excess scales linearly with the factor EF/EC. The use of Equation (14) helps to
avoid unrealistically high precipitation amounts which may occasionally occur when Equation (4) is
used for P > P0

90 if b > 1.
The final step in the method is to apply a change factor to the daily observation data. The change

factor is represented by:
R = P∗/P (15)

R for each 5-day sum period, is applied for each day within the 5-day period and is calculated
for each station separately. This way, a new precipitation data set is generated for each station. The
calculation processes are summarized in Figures 5 and 6.
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The output time series from the ADC method were used as input in the HEC-HMS model for
modeling the flow. A comparison was then made between the baseline period (1982–2005) and the
future period (2018–2041) in order to assess the impact of the ADC method on flow.

2.6. Best-Fit Probability Distribution and Return Period

2.6.1. Best-Fit Probability Distribution

In order to select the distribution that best fits existing data, distributions commonly used in
hydrology were tested using a goodness-of-fit test. These included the log normal [43], the log Pearson
III [44], the generalized Pareto [44], the generalized extreme values (GEV) [45] and the exponential [45]
distributions. Goodness-of-fit test statistics are usually employed to check the validity of a particular
probability distribution model on data. In this study the Kolmogorov–Smirnov (K–S) test was used;
the K–S test allows for the measurement of the maximum vertical difference between the theoretical
(Fx(x)) and empirical (Sn(x)) distributions (this difference is also called the K–S statistic) [46]. The null
hypothesis that is being tested is “H0: No difference between observed and expected frequencies”.

Considering a series of n samples, the data are sorted in increasing order (X1 < X2 < . . . < Xn),
and the K–S statistic is estimated for each value:

Sn(x) = 0; i f X = X1

= k/n; i f Xk ≤ X ≤ Xk+1
= 1; i f X > Xn

(16)

Dmax = max
∣∣∣Fx(x) − Sn(x)

∣∣∣ (17)

P(Dmax ≤ Dα
n) = 1− α (18)

where Dmax is the absolute maximum difference between observed and expected frequencies, Dα
n is the

critical value (Table A1, Appendix A [47]), α is the significance level, and k is the rank order of the data.
H0 is accepted if Dmax ≤ Dα

n .
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2.6.2. Return Period of Rainfall and Streamflow

The frequency analysis consisted of the estimation of values of the seasonal maximum rainfall and
flow, corresponding to the return periods of 5, 10, 20, 50 years before and after the application of the
ADC method. The frequency analysis is employed in hydrology for obtaining a relationship between a
particular event and its probability of exceedance. The probability of exceedance can be computed
using an empirical or analytical method. A simple empirical method was used and involved sorting
the annual series in descending order and assigning an increasing rank to each value.

The maximum 1-day rainfall and flow in the MAMJ (March–April–May–June) and OND
(October–November–December) seasons were analyzed in this study, and the empirical return
periods were computed using the Weibull plotting position formula given by:

P(X ≥ x) = m/(n + 1) = 1− F(x) (19)

T =
1

1− F(x)
(20)

where n is the total number of years and m is the rank of the peak flow values when ranked in
descending order; P(X ≥ x) is the probability of exceedance.

After fitting the data to a distribution, the baseline (1982–2005) return period was estimated for
5, 10, 20, 50 years and then compared with the corresponding return period for the future period
(2018–2041). This helped to assess the possible future change in the occurrence of extreme precipitation.

3. Results

3.1. CHIRPS Datasets Accuracy Analysis

For the satellite-based data accuracy analysis, the comparison was made on monthly and annual
totals. Table 3 presents the statistics averaged for each station. The results showed that, on a monthly
and an annual basis, all the compared stations had indices of agreement greater than 0.5, which implies
that there was a satisfactory degree of agreement between the ground station rainfall and the CHIRPS
rainfall. Similarly, all the stations showed good and acceptable correlations on the monthly scale, and
only two stations showed a non-satisfactory correlation (R2) on the annual scale. For the absolute error
index, on a monthly scale, only two stations showed some high values of RSR and four stations on an
annual scale. Globally, the majority of the stations showed acceptable agreement and goodness-of-fit
over the years, except for a few years. The months with more than three day gaps were excluded, and
this could be the cause of those few disagreements.

Figure 7 represents the graphical comparison of CHIRPS and observed rainfall based on mean
monthly distribution. It shows a general agreement and an acceptable fit between CHIRPS and the
observed data. These results tie with previous studies [48], wherein CHIRPS products were found to
be significantly better than other satellite rainfall data. However, the main limitations of these types of
accuracy evaluation are the lack of high-quality data and plausible measurement errors. It is important
to highlight the fact that at some of the stations, namely Associated Sugar Works, Mkongani Chief’s
Camp, Msambweni District Agricultural Office, Kinango Pumping Station and WAA Dispensary,
CHIRPS tended to overestimate the peak rainfall. We speculate that this might be due to the fact that
Mkongani Chief’s Camp and WAA Dispensary are located in a bushy environment where some portion
of the rainfall could have been stopped by the canopy, therefore occasionally underestimating the
rainfall measures. The three other stations with overestimated peaks are located very close to the coast
and could have also been subjected to measurement errors due to the high wind speed. Nonetheless,
we believe that the satisfactory statistics and graphical agreement on other stations can well justify the
fact that CHIRPS rainfall data are a good alternative to low-quality measured data.
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Table 3. Computed statistics of goodness-of-fit between observed and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) rainfall data for ten
stations and for the period 1981–2016.

1 2 3 4 5 6 7 8 9 10

Monthly scale

R2 0.64 0.79 0.81 0.76 0.77 0.56 0.58 0.67 0.73 0.68
d 0.84 0.91 0.86 0.89 0.93 0.81 0.89 0.87 0.88 0.88

RSR 0.49 0.50 0.92 1.01 0.49 0.74 0.57 0.62 0.56 0.55

Annual scale

R2 0.62 0.61 0.29 0.88 0.7 0.18 0.77 0.77 0.72 0.77
d 0.86 0.84 0.54 0.94 0.89 0.55 0.92 0.9 0.8 0.83

RSR 0.69 0.77 0.99 0.42 0.56 1.17 0.52 0.59 0.91 0.82

*Corresponding
Stations’ Names

Kidongo
Park’s Gate

Kwale Forest
Station

Associated
Sugar works

Lukore
Primary
school

Kikokeni
Agricultural

station

Mkongani
Chief’s
Camp

Kinango
Agricultural

Office

Msambweni
Agricultural

Office

Kinango
Pumping

station

WAA
Dispensary
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3.2. Projection of Future Rainfall Extremes Using the Advanced Delta Change Approach on Regional Climate
Models Output

3.2.1. CORDEX Models Performance Evaluation and Selection

Twenty-one models were evaluated against CHIRPS data using RCMES. The models were grouped
into five RCMs, each model being forced by different GCMs, as presented in Table 2. The correlation
coefficient and the standard deviation were plotted on a Taylor diagram, and the biases were also
plotted on maps. Figure 8 represents the bias plot during the studied period (1981–2005). The
model bias varied from −1.6 to +1.6 among these RCMs and across the whole country (Kenya). The
biases are defined as differences between observations and climate simulations. Two models, namely
UQAM-CRCM5 forced by MPI-M-MPI-ESM-LR (D) and UQAM-CRCM5 forced by CCCma-CanESM2
(E) generated an overall high wet bias. Eight models (L, T, U, A, O, Q, F, B and R), however, showed
a dry bias in the majority of Kenya. In the South Kenya region particularly, more than half of the
RCMs showed a low bias between −0.8 and 0.4. The ensemble, which is an average of all the models,
generated the lowest bias all over the area. The values of biases in this study are close to the findings
of [49], where biases for Kenya ranged between −2.5 and +2.5.
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models’ IDs referred in Table 2).

Figure 9 represents the Taylor diagram analysis of monthly rainfall averaged over Kenya domain
during the period 1981–2005, from CHIRPS and the 21 CORDEX models listed in Table 2, with the
dashed line representing the reference standard deviation of 1.00. The distance between the reference
and individual points corresponds to RMSE [50]. The analysis showed that the spatial pattern of
UQAM-CRCM5 model forced by MPI-M-MPI-ESM-LR, and the ensemble closely agreed with CHIRPS,
with correlations nearly equal to 0.8. Most RCMs overestimated the extent of the standard deviation.
The UQAM-CRCM5 (MPI-M-MPI-ESM-LR) model and ensemble produced a lower RMSE than all
RCMs with standard deviations between 1.20 and 1.25. A similar conclusion was reached by [51],
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who found the UQAM-CRCM5 RCM performed best, and the ensemble mean reproduced the rainfall
climatology over Uganda with reasonable skill.

Hydrology 2019, 6, x 18 of 28 

 

 
Figure 9. Taylor diagram analysis of monthly rainfall averaged over Kenya domain during the period 
1981–2005, from CHIRPS and the 21 Coordinated Regional Climate Downscaling Experiment 
(CORDEX) models listed in Table 2. 

3.2.2. Validation of the Advance Delta Change Model 

To project future high rainfall, the advanced delta change method was applied by using models 
forced by the RCP8.5. As previously described, this approach has the advantage of capturing the 
extreme wet rainfall. A validation was done to verify if the ADC model was reproducing the observed 
data well. The method was applied for the ensemble mean of all the RCMs available on RCP8.5, and 
the time periods that were used are presented in Table 4.  

Table 4. Rainfall data period spans used in the advance delta change model. 

Rainfall Data Periods Start Year–End Year 
Observed period 1982–1992 
Control period 1982–1992 

Validation period 2006–2016 
Observed period for validation 2006–2016 

Figure 9. Taylor diagram analysis of monthly rainfall averaged over Kenya domain during the period
1981–2005, from CHIRPS and the 21 Coordinated Regional Climate Downscaling Experiment (CORDEX)
models listed in Table 2.

3.2.2. Validation of the Advance Delta Change Model

To project future high rainfall, the advanced delta change method was applied by using models
forced by the RCP8.5. As previously described, this approach has the advantage of capturing the
extreme wet rainfall. A validation was done to verify if the ADC model was reproducing the observed
data well. The method was applied for the ensemble mean of all the RCMs available on RCP8.5, and
the time periods that were used are presented in Table 4.
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Table 4. Rainfall data period spans used in the advance delta change model.

Rainfall Data Periods Start Year–End Year

Observed period 1982–1992
Control period 1982–1992

Validation period 2006–2016
Observed period for validation 2006–2016

The performance statistics that were used are previously described: RSR, R2 and d. For each
station, the statistics were calculated between the transformed and the observed monthly 10%, 30%,
60% and 90% quantiles. The validation results are presented in Table 5. Based on the criteria defined
in Table 1, it could be noted that all the five stations were showing acceptable statistics for P60 and
P90. For the lower tail of the distribution (P10 and P30), the statistics were all acceptable except for M2
and M4. These results are consistent with the fact that the advanced delta change method tend to
relatively reproduce the future changes in the upper tail of the distribution as explained by [34]. Based
on the model evaluation guideline given by [31], the advanced delta change model was found to have
a satisfactory performance. The output was used in the HEC-HMS model for flow modeling before the
frequency analysis was performed.

Table 5. Advanced delta change model validation results.

Stations Statistics P10 P30 P60 P90

M1
RSR 0.7 0.6 0.7 0.7
R2 0.6 0.7 0.6 0.7
d 0.9 0.9 0.9 0.9

M2
RSR 0.9 0.7 0.6 0.7
R2 0.3 0.6 0.7 0.7
d 0.7 0.9 0.9 0.9

M3
RSR 0.6 0.4 0.5 0.7
R2 0.6 0.8 0.8 0.7
d 0.9 1.0 0.9 0.9

M4
RSR 1.1 1.0 0.6 0.7
R2 0.3 0.6 0.8 0.7
d 0.7 0.8 0.9 0.9

M5
RSR 0.7 0.4 0.5 0.7
R2 0.6 0.9 0.8 0.7
d 0.9 1.0 1.0 0.9

3.2.3. Quantiles Comparison under the Advanced Delta Approach

Table 6 shows the monthly summary of the 10th quantile and the quantile ratios (PF
10/PC

10). The
analysis showed an increase of the quantiles in the first half of the year (January–July) and a decrease
in the last months (August–December). The mean ratios for both periods were numerically close.
From January to July, the quantile ratios were PF

10/PC
10 = 1.2 and P∗10/PO

10 = 1.1 while from August to
December they were PF

10/PC
10 = P∗10/PO

10 = 0.8. However, the individual monthly ratios showed some
important differences, especially for February, March and December.

Table 7 shows the monthly summary of the 90th quantile and the quantile ratios (PF
90/PC

90). As for
the 10th quantile, the analysis showed an increase of the quantiles in the first half part of the year
(January–July) and a decrease in the last months (August–December). The mean ratios for both parts
were also numerically close; from January to July, PF

90/PC
90 = 1.1 and P∗90/PO

90 = 1.2, while from August
to December, PF

90/PC
90 = P∗90/PO

90 = 0.8. However, the individual monthly ratios showed some close
values, unlike the 10th quantiles. The correspondence in the monthly quantiles values and the quantiles
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factors suggests that the ADC transformation emulates the future changes well in these quantiles, with
lower differences for the upper tail as found by [34].

Table 6. Monthly summary of 10% quantiles and quantile ratios averaged for all stations.

PC
10 PF

10

Ratio

PO
10 P*

10

Ratio
Control

Series (mm)
Future

Series (mm)
Observed

Series (mm)
Transformed
Series (mm)

Months (1982–2005) (2018–2041) (1982–2005) (2018–2041)

January 4.4 4.4 1.0 0.4 0.3 1.0
February 3.6 5.2 1.4 0.0 0.0 1.0

March 6.1 9.5 1.6 0.3 0.4 1.3
April 17.4 19.1 1.1 6.2 7.2 1.2
May 18.6 22.1 1.2 3.3 3.8 1.2
June 10.7 11.8 1.1 5.5 6.4 1.2
July 7.8 8.4 1.1 2.6 2.7 1.1

Average 9.8 11.5 1.2 2.6 3.0 1.1
August 7.6 6.9 0.9 0.9 0.8 0.8

September 9.3 7.0 0.8 0.5 0.4 0.7
October 15.1 11.5 0.8 0.6 0.4 0.8

November 16.1 12.4 0.8 2.4 2.0 0.8
December 8.0 6.0 0.7 0.2 0.2 0.9
Average 11.2 8.8 0.8 0.9 0.7 0.8

Table 7. Monthly summary of 90% quantiles and quantile ratios averaged for all stations.

PC
90 PF

90

Ratio

PO
90 P*

90

RatioControl Series Future Series Observed Series Transformed Series

Months (1982–2005) (2018–2041) (1982–2005) (2018–2041)

January 12.8 12.7 1.0 10.5 12.6 1.2
February 11.4 16.8 1.5 6.7 10.0 1.5

March 18.6 23.3 1.3 30.1 36.5 1.2
April 38.6 40.9 1.1 85.7 93.6 1.1
May 40.4 45.1 1.1 149.1 161.4 1.1
June 27.5 28.4 1.0 44.4 47.6 1.1
July 18.7 20.0 1.1 35.2 32.3 0.9

Average 24.0 26.7 1.1 51.7 56.3 1.2
August 19.2 17.6 0.9 24.8 20.3 0.8

September 24.8 18.4 0.7 17.1 12.4 0.7
October 37.5 26.2 0.7 40.0 28.2 0.7

November 32.2 28.4 0.9 44.0 35.9 0.8
December 23.7 16.8 0.7 32.9 29.0 0.9
Average 27.4 21.5 0.8 31.8 25.2 0.8

3.2.4. Best-Fit Probability Distributions for the Maximum One Day Rainfall in MAMJ and
OND Seasons

After applying the K–S test, the best fitting probability distributions were chosen as the ones with
the least Dmax, with Dmax ≤ Dα

n : 0.269 for a significance level of 0.05. Having multiple stations and
multiple candidate distributions, an average of the maximum distance Dmax was estimated in order to
pick the distribution that had the minimal statistic. The results are presented in Table 8, and suggest
that for the MAMJ and OND seasons, the generalized Pareto and the exponential distributions can be
picked, respectively.
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Table 8. Best-fitting distributions for the maximum one day rainfall in March–April–May–June (MAMJ)
and October–November–December (OND) seasons for each station.

Seasons Distributions
M1 M2 M3 M4 M5 Average

DmaxDmax p-Value Dmax p-Value Dmax p-Value Dmax p-value Dmax p-Value

MAMJ

LogNormal 0.079 0.99 0.063 1.00 0.092 0.96 0.097 0.94 0.084 0.98 0.083
Log Pearson III 0.071 1.00 0.059 1.00 0.083 0.98 0.079 0.99 0.071 1.00 0.073

GEV-Max (L-moments) 0.084 0.98 0.058 1.00 0.085 0.98 0.078 0.99 0.076 0.99 0.076
Pareto (L-moments) 0.074 1.00 0.057 1.00 0.088 0.97 0.060 1.00 0.067 1.00 0.069

OND

Exponential
(L-moments) 0.072 1.00 0.067 1.00 0.075 0.99 0.089 0.97 0.093 0.96 0.079

Log Pearson III 0.081 0.99 0.084 0.98 0.084 0.98 0.093 0.96 0.100 0.93 0.09
Pareto (L-moments) 0.072 1.00 0.067 1.00 0.077 0.99 0.088 0.97 0.097 0.95 0.080

3.2.5. Maximum One Day Rainfall Return Period before and after ADC

The return period of the seasonal maximum rainfall was compared between the observed and the
transformed data series, and the plots are presented in Figure 10. The results demonstrated two things.
First, all five stations showed an increasing vertical distance between the baseline and the projected
maximum rainfall. In fact, from five to 50 years, the vertical distance increased from 15.338, 14.44, 15.445,
15.537, and 15.542 mm to 24.403, 32.809, 32.752, 28.18, and 33.999 mm for sub-basins M1, M2, M3, M4 and
M5, respectively. The fact that the values are highly similar for the sub-basins could be explained by their
closeness to each other. Second, as previously discussed for the quantiles, it could also be observed that
the transformed maximum precipitation was higher than the observed for the MAMJ season.
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For example, for M1, a 20-year return period the transformed maximum showed 288.5 mm, while
the observed maximum was 267.1 mm. Due to a lack of long-term rainfall data, the researchers decided
not to investigate longer return periods because they could significantly be biased.

Figure 11 shows the return period of the seasonal maximum rainfall for the past and transformed
data series of October–November–December (OND). As in the MAMJ season, the results indicated that
all the five stations showed a similar increasing vertical distance between the baseline and the projected
maximum rainfall. In fact, from five to 50 years, the vertical distance increased from 27.968, 29.266,
26.829, 25.892, and 24.937 mm to 66.905, 70.485, 64.507, 63.952, and 60.766 mm for sub-basins M1,
M2, M3, M4 and M5, respectively. In this case, again, the values were very similar for the sub-basins,
certainly due to their closeness to each other. However, unlike the MAMJ season, the results showed
that the observed were much higher than the transformed, which suggested a decrease of the maximum
rainfall in the OND season. For example, for M1, a 20-year return period the transformed maximum
showed 163.12 mm while the observed maximum was 214.54 mm. These findings suggest that in this
part of Kenya (Kwale) the ADC model tends to project an increase in the rainfall wet extremes only in
the first rainy season of the year and a decrease in the second rainy season.
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3.3. Hydrological Impact of the Projected Rainfall Extreme on the Gaging Station 3KD06 for the Period
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The transformed rainfall data were used as inputs in the HEC-HMS model for evaluating the
hydrological response to the projected extreme rainfall. As the observed flow data were available at
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the 3KD06 gaging station, we decided to assess the changes through the comparison of the observed
and the future flow. The MAMJ one day maximum flow was found to fit the exponential distribution
well, while the OND one day maximum flow fitted well the Pareto distribution.

Figure 12 shows the MAMJ one day maximum flow return periods for the baseline and the future
projection at 3KD06. The results showed an increase in the vertical distance between the baseline and
the future. From five to 50 years return period, the vertical distance increased from 6.966 to 14.74 m3/s.
As for the MAMJ one day maximum rainfall, the projected stream was higher than the observed
streamflow. Another important finding was that for an increase of the 50 year return period maximum
rainfall of 24.403 and 32.809 mm at the M1 and M2 sub-basins, respectively, an increase of 14.740 m3/s
of the 50-year return period maximum flow was observed at their junction (3KD06).
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22.972 m3/s. As for the OND one day maximum rainfall, the projected stream was lower than the
observed streamflow. Another important finding was that for a decrease of the 50-year return period
maximum rainfall of 66.905 and 75.485 mm at the M1 and M2 sub-basins, respectively, and a decrease
of 22.972 m3/s of the 50-year return period maximum flow, at their junction (3KD06) was observed.

4. Conclusions

In summary, this paper argued that CHIRPS rainfall data were a good alternative to low quality
measured data in the studied catchment, and the ensemble of all the models in the historical period
generated the lowest bias and the highest correlation all over the area. Additionally, based on the
model evaluation guideline given by [31], the advanced delta change (ADC) model was found to
have satisfactory performance over the catchment. Moreover, the ADC transformation seemed to
have emulated the future changes well in the quantiles and more in reproducing the upper tail of
the distribution. The maximum one day rainfall and flow frequency analysis suggested that in the
study area, the RCMs bias corrected by the ADC method projected an increase in the rainfall wet
extremes in the first rainy season of the year (MAMJ) and a decrease in the second rainy season (OND).
These changes in rainfall extremes induced a similar change pattern in streamflow extremes; that is,
an increase/decrease of rainfall extremes generated an increase/decrease in streamflow extremes. These
results provide evidence in the capability of the ADC bias correction approach to capture the changes
in the upper tail of both the rainfall and flow data in the longest and the highest rainy season MAMJ.
Future research could further explore peak flow projections for up to 1000 years’ return period if a
convenient method is found to generate longer time series of data.
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Appendix A

Table A1. Critical values (Dα
n) of the maximum absolute difference between observed and expected

frequencies [47].

n
Significance Level, α

0.1 0.05 0.02 0.01

1 0.95 0.975 0.99 0.995
2 0.77639 0.84189 0.9 0.92929
3 0.63604 0.7076 0.78456 0.829
4 0.56522 0.62394 0.68887 0.73424
5 0.50945 0.56328 0.62718 0.66853
6 0.46799 0.51926 0.57741 0.61661
7 0.43607 0.48342 0.53844 0.57581
8 0.40962 0.45427 0.50654 0.54179
9 0.38746 0.43001 0.4796 0.51332

10 0.36866 0.40925 0.45662 0.48893
11 0.35242 0.39122 0.4367 0.4677
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Table A1. Cont.

n
Significance Level, α

0.1 0.05 0.02 0.01

12 0.33815 0.37543 0.41918 0.44905
13 0.32549 0.36143 0.40362 0.43247
14 0.31417 0.3489 0.3897 0.41762
15 0.30397 0.3376 0.37713 0.4042
16 0.29472 0.32733 0.36571 0.39201
17 0.28627 0.31796 0.35528 0.38086
18 0.27851 0.30936 0.34569 0.37062
19 0.27136 0.30143 0.33685 0.36117
20 0.26473 0.29408 0.32866 0.35241
21 0.25858 0.28724 0.32104 0.34427
22 0.25283 0.28087 0.31394 0.33666
23 0.24746 0.2749 0.30728 0.32954
24 0.24242 0.26931 0.30104 0.32286
25 0.23768 0.26404 0.29516 0.31657
26 0.2332 0.25907 0.28962 0.31064
27 0.22898 0.25438 0.28438 0.30502
28 0.22497 0.24993 0.27942 0.29971
29 0.22117 0.24571 0.27471 0.29466
30 0.21756 0.2417 0.27023 0.28987
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